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This paper reports on the use of a parallelised Model Predictive Control, Sequential
Monte Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory
control in air traffic management specifically around the terminal manoeuvring area of an
airport. The target problem is nonlinear, highly constrained, non-convex and uses a single
decision-maker with multiple aircraft. The implementation includes a temporal spatio
wind model and rolling window simulations for realistic ongoing scenarios. The method
is capable of handling both arriving and departing aircraft including some with very low
fuel remaining. The aircraft are optimised for multi priority objective functions dependant
on whether they are arriving or departing. A novel flow field is proposed to smooth
the approach trajectories for arriving aircraft and all trajectories are planned in three
dimensions.

I. Introduction

Air Traffic Management (ATM) is concerned with the routing, safety and scheduling of aircraft in regions
of airspace. Currently this role is performed by Air Traffic Control (ATC) and is a very human orientated
process, although steps towards autonomy have been made in recent years.1 ATC has complete control of
the aircraft through all stages of flight, from pre-flight flight plans, updates and additional instructions based
on traffic flow, to landing scheduling. The majority of ATC concerns lie with the avoidance of dangerous
encounters through maintenance of safe separation between aircraft. If a loss of the minimum safe separation
between aircraft does not have safety repercussions (for example in mid-long term detection) the priorities
of the aircraft are considered by the ATC when resolving the conflict. These priorities can include avoidance
of turbulence, minimising fuel usage or reaching a desired time of arrival.

The task of ATC is further complicated by the introduction of uncertainty. This uncertainty is introduced
by the effect of the wind, incomplete knowledge of the physical coefficients of the aircraft and imprecision in
the execution of ATC commands. With the addition of uncertainty tasks such as conflict detection become
a matter of assessing the probability of a conflict given the current state of the airspace and the uncertainty
of the future positions of the aircraft. Probabilistic models can be used to estimate the distribution of the
future state of the aircraft given the current state.

Analysis has been conducted on where the greatest savings can be made throughout an aircrafts’ flight
trajectory with a network wide drive to reduce emissions and save energy. The cruise behaviour of aircraft
has long been an active area of research however there are many savings which can be made in the climb and
descent phases of flight.2 Efficiency of aircraft arrivals and departures can be improved by increasing the
number of continuous climb departures (CCDs) and continuous descent approaches (CDAs). In continuous
climbs or descents the aim is to minimise the amount of time aircraft spend holding at fixed altitudes.
In a congested airspace especially around the terminal manoeuvring area (TMA) making room for such
manoeuvre places additional stress on the ATC system.

Many existing multi-aircraft trajectory optimisation methods focus purely on cruise like conditions where
trajectories can be approximated in two dimensions or movement in the third dimension is highly penalised
for passenger comfort.3–5 Some work has been done using a novel conic approximation of the TMA to
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extend a 2 dimensional approach.6 Methods such as mixed integer linear programming (MILP) require a
linearisation of the problem and slow down on centralised problems with large numbers of vehicles due to
the number of binary variables.7

Work more specific to the TMA often focus primarily on runway ordering optimisation through dy-
namic programming techniques8 these can include stochastic elements to account for uncertainty within the
problem.9 The work of10 compares direct and indirect optimisation methods for a single aircraft’s landing
trajectory with the eventual use of a dynamic programming technique to allow for real time operation. The
work generated paths of the type Shortest and Fastest Continuous Descent Approach (SF-CDA) able to
reduce commercial aircraft annoyances from noise and fuel consumption.

This paper is tackles the TMA problem through use of model predictive control and sequential monte
carlo optimisation. In model predictive control (MPC) an (open loop) optimal control problem is solved
at each time step.11 This optimisation problem can be non-convex because of local minima and lack of
smoothness primarily from nonlinear dynamics, non-convex constraints or a non-convex objective function.
Such optimisation problems are challenging to solve and can require sophisticated optimisation techniques.
Stochastic optimisation allows for modelling the uncertainty present in ATC whilst also able to cope with
nonlinear dynamics, constraints and an objective function.

Sequential Monte Carlo (SMC) optimisation is better known for its use in ‘particle filtering’ (for model
estimation12). It was observed that MPC optimisation shares similar features to that of model estimation
and through this connection SMC was applied to MPC optimisation by.13 The work of13–15 include examples
of SMC applied to MPC of multiple vehicles flying in two and three dimensions under the predicted effects
of wind and additional uncertainty. These works also observed that the time required to solve such problems
were currently prohibitive despite the positive features of the solutions and indicated that potential time
savings could be achieved through parallelisation.

Parallelisation has become a popular topic of research due to improvements in the accessibility and
availability of both software and hardware solutions. Graphics Processing Units (GPUs) are one of the key
technologies to emerge into the mainstream. Originally developed as dedicated devices for real-time graphics
rendering they have entered into scientific computing circles by offering and facilitating exploitation of their
many multi-core processors. Monte Carlo methods, when implemented on GPUs, have a proven record of
significant speed-up for statistical, chemical and economic applications.16–19

Previous work by the authors has also demonstrated a 98% computational speed up for implementing
SMC on a GPUs with cruising aircraft avoidance based applications.20 The speed up was of a great enough
magnitude to allow the problems to be solved in real time for up to 20 vehicles in dense scenarios with a
nonlinear model and non convex constraints. This previous work considered only Gaussian white noise as
disturbance on the controls of the aircraft, did not include a wind model and focused on scenarios of aircraft
avoidance in cruise like conditions.

This paper considers the more complex task of optimising the controls of aircraft approaching and depart-
ing from an airport in the terminal manoeuvring area (TMA). These aircraft are now subject to additional
constraints; multi priority objective functions; a temporal spatio wind model; and rolling window simulations.

The paper is organised as follows: Section II and Section III reviews the SMC optimisation method whilst
discussing the customisation for the considered application; Section IV explains the parallelisation of the
algorithm; Section V presents the results; Finally, Section VI presents conclusions.

II. Model Predictive Control

Model Predictive Control (MPC), also known as Receding Horizon Control, is an optimisation-based
control strategy. A constrained, finite-horizon, optimal control problem is solved online at each iteration by
means of the available state/measurements. This solution yields the controls for the duration of the finite
horizon. The first control move of the optimal sequence is then applied to the aircraft. The new states are
measured and the optimisation loop begins again. For the air traffic control problem this forms a closed
loop control system, as depicted in Figure 1. Many alternative forms of optimisation have been used in the
first block of the diagram and often, in simpler systems, linear or quadratic programming can be applied.
In this paper Sequential Monte Carlo optimisation is used as the method for solving for the applied control
sequence. The remainder of this paper will deal with operations occurring in the SMC optimisation section
of the update cycle.
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Figure 1. Graphical Representation of MPC Update Step

III. Sequential Monte Carlo

The underlying concept of SMC is to approximate a sequence of distributions of interest as a collection
of L discrete masses of the variables (more commonly referred to as particles). These particles are weighted
by a collection of weights to reflect the shape of the distribution. As the distribution to be approximated can
vary with time the weights and particles are propagated iteratively using a sequential importance sampling
and resampling mechanism. This sampling and resampling mechanism uses the particles of iteration J − 1
to obtain new particles at iteration J . In this way a population of particles is iterated upon until a final
sample is drawn from the population to act as an estimator of the maximisers.

Algorithm 1 Sequential Monte Carlo
1: J ← 0
2: Define a monotonically increasing SampleSchedule of length Jmax

3: Clone all agents’ current states to give each particle its own copy.
4: Set the weights of all agents to 1/L where L is the number of particles.
5: For each particle and agent in the particle randomly generate controls over the entire horizon H
6: while J ≤ Jmax do
7: j ← 0
8: for each particle l do
9: while j ≤ SampleSchedule(J) do

10: Sample disturbance realisations for all agents and all time steps to horizon H.
11: Plan trajectories for all agents till horizon H.
12: if an agent i fails constraints then
13: agent’s i’s weight set to 0.
14: end if
15: Calculate each agent’s cost.
16: Scale each agent’s weightings by their cost.
17: j ← j + 1
18: end while
19: end for
20: J ← J + 1
21: if J ≤ Jmax then
22: Resample all particles
23: Peturb all agents’ controls with Gaussian white noise.
24: Set the weights of all agents to 1/L where L is the number of particles.
25: end if
26: end while
27: Draw final sample from particle population.

Algorithm 1 summarises the implementation of SMC. Each step of the algorithm shall now be dealt
with in further depth with specific reference to the application of multiple aircraft trajectory planning with
avoidance.



III.A. Particles

A particle represents a single instance of the problem with the data of all associated agents. The number of
particles for optimisation is a design variable dependent on the complexity of the problem to be optimised.
The more complex the problem, the larger the number of particles may need to be to adequately characterise
the search space. Inside each particle there is:

• An initial state for each of the N individual aircraft. These initial states for aircraft are the same
across all particles and are provided to the optimisation at the beginning of the algorithm.

• The control inputs for every step of the MPC horizon H for every aircraft. In this paper’s formulation
there are 3 controls for each aircraft (thrust, bank angle and pitch angle) totalling N ∗H ∗ 3 control
inputs. These control inputs are different for every particle.

• A separate weighting for each of the N individual aircraft in the scenario, used for resampling.

The controls inside particles are initialised as random samples from a uniform distribution for each control
between the maximum and minimum value. After this initialisation at line 5 the controls are then updated
following resampling and perturbation in lines 22- 23. The perturbation moves particles locally in the search
space, whilst resampling causes particles to cluster around areas of the search space with positive attributes
as determined by the objective function. The weights of all aircraft are initialised as 1/L where L is the
number of particles and these are updated in line 16.

III.B. Trajectory Planning and Disturbance Realisations

In lines 10-11 each aircraft in each particle plans its future trajectory given the initial state and controls (from
the particle’s data) and the disturbance samples. The discretised aircraft dynamics model is a standard 6
DOF model with 6 states and 3 inputs

xi(k + 1) =xi(k) + δt(vs,i(k) cos(χi(k)) cos(γi(k))) + wx(k)δt (1a)
yi(k + 1) =yi(k) + δt(vs,i(k) sin(χi(k)) cos(γi(k))) + wy(k)δt (1b)
zi(k + 1) =zi(k) + δt(vs,i(k) sin(γi(k))) (1c)

vs,i(k + 1) =vs,i(k) + δt(
Ti(k)−Di(k)

mi(k)
− g sin(γi(k))) (1d)

χi(k + 1) =χi(k) + δt(
Li(k) sin(φi(k))
mi(k)vs,i(k)

) (1e)

mi(k + 1) =mi(k)− δt(ηTi(k)) (1f)

where: δt is the step length; x, y and z are the Cartesian coordinates of the aircraft (z acting as the altitude
of the aircraft); m is the total mass of the aircraft; vs is the true airspeed; χ is the heading angle; γ the climb
angle and φ the bank angle. The subscript i denotes the ith aircraft. The control variables are φ (bank),
T (thrust) and γ (climb). Lift L and drag D are calculated using the standard aerodynamic relations. The
fuel usage is controlled by the constant η.

Each aircraft is given an initial state X0,i = (x0,i, y0,i, z0,i, χ0,i, vs,0,i,m0,i). Departing aircraft are mod-
elled from an initial altitude of 400m, where the aircraft is assumed to have taken off from the runway and
completed its initial climb. A departing aircraft is considered as having left the TMA once it has reached a
set distance DTMA from the airport at which point it is assumed to enter a neighbouring control zone and
is handled by alternative ATC.

Arrival aircraft are allowed the flexibility to enter the problem at any point along the TMA’s boundary.
Arrival aircraft are deemed to have ‘landed’ or passed from our control once they have satisfied the following



constraints: √
xi(k)2 + yi(k)2 ≤Prunway (2a)

βi(xi(k), yi(k), zi(k)) ≤Pβ (2b)
| arctan(yi(k)/xi(k))| ≤Pχ (2c)

|χi(k)− 180| ≤Pχ (2d)
vs,i(k) ≤Pvs

(2e)

The first 3 of these constraints define the landing sector, an arc of a with radius Prunway horizontal angle
Pχ and vertical angle Pβ . Constraint 2d ensures that the aircraft is pointing towards the runway assuming
an East to West landing without significant crosswind. Finally constraint 2e limits the speed at which the
aircraft can enter the landing sector for a successful landing. These are shown pictorially in Figure 2.
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Figure 2. Landing Envelope Shape and Size

The disturbance realisations added to the system are the primary method of simulating uncertainty within
the system. This uncertainty can come from wind, sensor noise, controller noise and human factors. Within
the inner loop of optimisation (lines 9-18) each aircraft within a particle will have drawn SampleSchedule(J)
disturbance realisations and planned the same number of trajectories. This inner loop serves to simulate
different disturbance scenarios on an aircraft to determine if the controls are valid with respect to constraints,
and their fitness with respect to the objective function. This information is stored in the aircraft’s weight
within the particle as described in the next two subsections. In applications with no uncertainty there would
be no need for repeated planning and simulation of the aircraft and the inner loop would only be executed
once. In this paper we have restricted the disturbances to being wind and this is discussed in greater depth
in section III.I.

III.C. Constraint Handling

There are two types of constraint handled by line 12. The first are unary constraints which deal only with
one aircraft at a time. Examples of these include flight envelope constraints and the minimum aircraft mass
constraint. The flight envelope constraints provide upper and lower bounds for both the state and control
variables:

zmin ≤ z(t) ≤ zmax (3a)
−γmax ≤ γ(t) ≤ γmax (3b)
−φmax < φ(t) < φmax (3c)
Tmin ≤ T (t) ≤ Tmax (3d)
vmin ≤ vs(t) ≤ vmax. (3e)

The minimum aircraft mass constraint enforces that the total aircraft mass must always remain above the
mass of the aircraft alone without fuel:

m(t) ≥ mAircraft. (4)

This acts on a constraint on the total fuel use across the entire modelled flight. Further unary constraints
can be added. For example to create exclusion zones where aircraft are not allowed to fly, or must fly above
a certain altitude. These are not included in the existing model but can be implemented in future work.



The second type of constraint are the binary constraints. These take place between two aircraft in the
same particle, such as in conflict avoidance. In this paper the protection zone around each aircraft is modelled
as a cylinder with horizontal radius Pr and altitude separation of Ph. Two aircraft i and j avoid each other
if they satisfy the following constraint for every time step in the MPC horizon:

(xi(k)− xj(k))2 + (yi(k)− yj(k))2 ≥ (2Pr)2

∨|zi(k)− zj(k)| ≥ 2Ph
∀k, ∀i, j ∈ {1, ..., N} : i 6= j. (5)

If an aircraft fails any of its unary constraints then its weight stored in the particle is set to 0. If a pair of
aircraft fail a binary constraint then both aircraft have their weights set to 0. Any aircraft with a weighting
of 0 will not be resampled in the resampling phase of the algorithm described in subsection III.F.

The constraint handling method described in this section is a departure from the the generic formulation
for a SMC optimisation. In the generic formulation a weight is linked to a single particle which would contain
the entire simulation of all N aircraft. In that case if a single aircraft fails any constraint the entire simulation
would be weighted as 0 and all controls from that particle discarded when the particles are resampled in the
next iteration. Conversely, by using our implementation, aircraft are weighted individually inside a particle.
If a single aircraft fails a constraint the non-failing aircraft weights would still be non-zero. This would allow
their controls to continue to the next iteration. The application under consideration is a highly constrained
situation and this alteration gives greater flexibility in keeping valid control solutions for aircraft which would
otherwise have been discarded. This in turn allows a smaller number of particles as the distribution they
are required to model is less complex than the case of a multi-aircraft weighted particle.

III.D. Particle Costing

The SMC method requires a non-negative maximisation function as the objective function JT . This objective
function is made up of multiple elements and is different for arrival and departure aircraft due to their distinct
priorities. However the each element of the objective functions for both types of aircraft take a basic form
where we have negated the original minimisation function the element is associated with then normalised
by adding the supremum of the function and dividing by the difference between the supremum and the
infimum of the function. The supremum and infimum are readily available via geometric arguments as will
be explained in greater depth case by case.

III.D.1. Departure:

Departing aircraft are given a desired target altitude Zi, a desired airspeed vs,D and bearing θi,F . These are
used to evaluate the aircraft’s progress in the objective function. However it is not necessary for the aircraft
to have reached these before leaving the TMA as it can take a while to reach cruise altitude and traffic in
the TMA could make reaching the exact target bearing unrealistic.

The departing aircrafts’ objective function JDT,i is made up of four elements; reaching the target bearing
they need to achieve for onwards flight to their destination; rewarding the aircraft for climbing towards their
required cruise height and a cost on fuel used.

JD1,i(k : k +H) = −Ai(k:k+H)+supAi(k:k+H)
supAi(k:k+H)−infAi(k:k+H) (6a)

JD2,i(k : k +H) = (mi(k)−mi(k+H))+δtHTmaxη
δtHTmaxη

(6b)

JD3,i(k : k +H) = −Bi(k:k+H)+supBi(k:k+H)
supBi(k:k+H)−infBi(k:k+H) (6c)

JD4,i(k : k +H) = −Ci(k:k+H)+supCi(k:k+H)
supCi(k:k+H)−infCi(k:k+H) (6d)



where:

Ai(k : k +H) =
k+H∑
j=k

|θi(j)− θi,F |
H

(7a)

Bi(k : k +H) =
k+H∑
j=k

√
(ztf ,i − zi(j))2

H
(7b)

Ci(k : k +H) =
k+H∑
j=k

|vs,i(j)− vs,D|
H

(7c)

A is the absolute angle between the desired bearing of the aircraft leaving the airport and the actual bearing
of the aircraft from the airport. B is the distance between the desired altitude for cruise and the altitude
of the aircraft. C is the difference between the desired airspeed and actual airspeed of the aircraft The sup
and inf of A are approximated as the maximum deflection from the desired bearing, 180 degrees and the
minimum deflection 0 degrees respectively. Similarly for B the sup is the maximum distance the aircraft can
be from its target altitude given its current altitude, obtained by either climbing or descending with γmax

and Vmax. The inf is then the minimum distance the aircraft can be from its target altitude similarly using
the γmax and Vmax until it is at the desired altitude at which point it would be 0. By using this formulation,
the cost for aircraft i which is on its desired bearing for all steps of the horizon would have a cost of 1 for
JD1,i, while an aircraft j which is 90 degrees away from its desired bearing for all steps of the horizon would
have a cost of 0.5 for JD1,j . The cost JD2 is the fuel minimisation recast as a maximisation; δtHTmaxη is the
maximum amount of fuel that could be used in a step, the minimum is approximated to be 0.

The four parts of the cost JD are all normalised and then scaled in importance by the weighting factors
αj . These weighting coefficients have been tuned empirically and have a large effect on the behaviour of
aircraft. Choice of αj affects policy e.g. fuel use, noise abatement etc. Example values of αj used for the
simulations in this paper are given in part V.

JDT,i(k : k +H) =
∑4
j=1

αjJ
D
j,i(k:k+H)

H (8a)

0 ≤ JDT,i(k : k +H) ≤ 1 (8b)
4∑
j=1

αj = 1 (8c)

III.D.2. Arrival

In contrast to departures, arriving aircraft have far stricter terminal constraints with a specific requirement
that to land the aircraft must be: travelling towards the runway; be in line with the runway given a heading
tolerance; within a certain distance of the runway; travelling below a given speed; and be within a set altitude
trajectory to accomplish landing. The model does not extend to fully landing the plane and continues to
assume pilot control for this aspect of the flight, similar to that of the initial take off.

Arriving aircraft will head towards the airport following an objective function made up of 3 elements.
The first is a cost on the fuel used to encourage minimal fuel use; the second rewards the aircraft for following
a nominal altitude descent trajectory; and the third rewards the aircraft for keeping its heading close to a
nominal flow field designed to encourage the aircraft to turn smoothly before approaching the runway. Such
a flow field is entirely designable based on the airport or goals of the ATC for the airport. For this work the
airport flow field has been formulated as shown in figure 3 and the cost function penalises aircraft for their
heading not aligning with the flow field. The use of a nominal altitude descent trajectory rather than relying
purely on the minimisation of fuel or a target altitude is justified by the finite horizon of planning which
might not be long enough for an aircraft to reach the landing sector. By providing a nominal trajectory
the aircraft’s descent is smoother and less likely to drop in altitude sharply before having to fly close to the
ground till it reaches the landing sector. The arrival problem is then optimised for the maximisation of the
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Figure 3. Example flowfield for a single runway airport with East to West landing pattern

cost JAT which is the sum of the weighted costs for fuel usage, heading offset from flowfield and nominal
altitude descent trajectory following:

JA1,i(k : k +H) = −Di(k:k+H)+supDi(k:k+H)
supDi(k:k+H)−infDi(k:k+H) (9a)

JA2,i(k : k +H) = (mi(k)−mi(k+H))+δtHTmaxη
δtHTmaxη

(9b)

JA3,i(k : k +H) = −Ei(k:k+H)+supEi(k:k+H)
supEi(k:k+H)−infEi(k:k+H) (9c)

where:

Di(k : k +H) =
k+H∑
j=k

|χi(j)− χ̂i,f (xi(j), yi(j))|
H

(10a)

Ei(k : k +H) =
k+H∑
j=k

|βi(xi(j), yi(j), zi(j))− βi,f |
H

(10b)

and

χ̂i,f (xi(j), yi(j)) = 2 arctan
(
xi(j)
yi(j)

)
+ 90 (11)

βi(xi(j), yi(j), zi(j)) = arctan

 zi(j)

180− 2 arctan
(
xi(j)
yi(j)

)
||xi(j),yi(j)||

cos(arctan(xi(j)/yi(j)))

 (12)

D is the normalised difference between the flow field’s heading and the aircraft’s, E is the normalised
difference between the angle to the ground origin for the aircraft and the desired angle of approach. The
geometric terms of β and χ̂ are based on the flow field shown in figure 3 with an east west runway centred
on the origin with arrival flights landing on the eastern end of the runway. This example flow field is used
throughout the paper for its elegant geometric properties. It is simple to change the flow field and would
result in a change of equation 12. The distance from the aircraft to the origin for E is measured not as the
Euclidean distance but rather as the distance remaining on the arc of the flow field the aircraft is currently
on. The point of this design choice is to encourage a constant descent angle for the aircraft throughout its



travel to the runway. The Euclidean distance would have lead to variations in the angle of descent over the
full path for aircraft starting at positions greater than 90 degrees to the desired landing bearing.

Like the departures, the arrivals objective function is designed to be non-negative and the total cost
JAT and all its constituent costs are normalised between 0 and 1. The weightings on the terms of the cost
function α̃ are subject to priorities of the desired trajectory and example values are included in section V.

JAT,i(k : k +H) =
∑3
j=1

α̃jJ
A
j,i(k:k+H)

H (13a)

0 ≤ JAT,i(k : k +H) ≤ 1 (13b)
3∑
j=1

α̃j = 1 (13c)

III.E. Weight Scaling

As previously mentioned in subsection III.A each aircraft in a particle has a weight associated with it. This
weight records the degree of success an aircraft has in the simulations with various noise realisations. To do
this in line 16 the cost of aircraft i in particle l is multiplied by the weight of aircraft i in particle l each
time the inner loop 9-18 is executed. An aircraft only needs to violate 1 constraint in any execution of the
inner loop to have its weighting set to 0. This weighting would remain as 0 until resampling (described in
the next section) removes that aircraft’s proposed controls from the population.

Ideally at each iteration of the inner loop the sum across all particles L of weights associated with aircraft
i would be normalised to 1. This would reduce numerical issues as the inner loop progresses. Without such
a normalisation step the weight would always be decreasing

W j+1
i,l = W j

i,lJ
j
T,i,l (14a)

W 0
i,l = 1/L (14b)

0 ≤ JjT,i,l ≤ 1 (14c)

where W j
i represents the weight and JjT,i,l the objective function value of aircraft i in particle l at inner loop

iteration j and L is the number of particles. The cost is always between 0 and 1 and the weight starts at less
than 1. Normalisation removal turns out to be a key topic in parallelisation of the method and is discussed
in further depth in section IV

III.F. Particle Resampling and Perturbation

In lines 22 - 23 the aircraft are individually resampled to generate a new population of particles. These new
particles have their aircraft controls perturbed by Gaussian white noise to separate particles with similar
controls across the local search space. This perturbation also allows particles to explore away from points
which were in the original randomly sampled population of controls.

Resampling is done on the basis of sequential importance sampling using a method such as Kitagawa
resampling.21 The higher a weight aircraft i has in particle l compared to the weight of aircraft i in all other
particles, the more likely it is to have its controls resampled into the new population.

As the aircraft are resampled separately to form the new particles no conflict avoidance guarantees can
hold once resampling has taken place. This arises from the phenomena that the controls from aircraft i from
particle l could now be in a new particle with the controls from aircraft j from particle m. This again arises
from the departure from the generic method of 1 weight per particle mentioned in section III.C, justified
by the significant simplification of dimensionality of the search space and the effect on both computation
time and particle populations needed. In the previous incarnation14 when a particle is resampled, then
prior to any Gaussian perturbation being added, the guarantee of conflict avoidance holds from the previous
iteration. However by separating aircraft and sampling from each aircraft to generate particles individually
these same avoidance constraints cannot be assumed to be held. This alteration however does have an effect
on drawing the final sample from each of the aircraft distributions with regards to the binary avoidance
constraints.



III.G. Final Sample Selection

This is the final step of the SMC optimisation (line 27) before it hands back to the MPC update process.
This step determines the controls to be used by all aircraft for the next update step. In many generic SMC
applications this final sample is taken as the mean of the values of the particles. In multi modal distributions
this would give an inaccurate estimation of the global optimisers (consider the mean of a control where half
of the population steers left around an obstacle and the other half right). An alternative statistical measure
to offset this problem would be to select the mode of the distribution. However this is also unsuitable in
our implementation. The presence of binary constraints across aircraft control distributions could lead to
constraint violation. Therefore throughout this paper we select the best performing particle in the final
iteration as our estimate of the maximiser.

To find the best performing particle the weights of all aircraft in the particle are multiplied together and
the particle with the greatest overall weight is selected as the estimator of the maximiser

max
l

N∏
i=0

Wi,l. (15)

Any particle where an aircraft has failed any constraint in simulation would have a weight 0 associated with
the failing aircraft and thus could not be selected as the best performing particle.

III.H. Rolling Window

To allow for longer scenarios where aircraft both enter and leave the problem as would happen in a real
airport the whole application is considered in the form of a rolling window. The length of the window is the
same length of the horizon H for the MPC and the window moves with every completion of an MPC update.
Any aircraft entering the problem (either through take off or landing) does so at a pre-determined time step,
though this can be relaxed to consider uncertainty on arrival into the problem. Only aircraft which are
considered active in the problem have their trajectories optimised by the algorithm previously described.

As we are using MPC, aircraft may become active in the problem midway through a horizon. Their
trajectories are optimised from the point they enter the problem. Similarly for arrival aircraft there is
the chance for an aircraft to complete mid horizon, thus leaving the problem. During the algorithm when
trajectories are planned (lines 10-11) arrival aircraft active in the problem are tested to see if they’ve entered
the landing sector. If they have they will be noted as finished and future time steps within that horizon will
not be planned for that aircraft. Departure aircraft are less constrained and not tested for early completion
during the trajectory planning stage. Arrival aircraft which have met their landing constraints mid horizon
are given the best possible cost, 1, for all remaining steps of the horizon as a bonus to that aircraft for
landing.

Figure 4 shows an example problem where aircraft enter and leave the problem during simulation. Active
aircraft are shown in light blue, finished aircraft which have left the problem are shown in dark blue and
aircraft yet to enter the problem are shown in hatched lines. Aircraft will not be deactivated until they no
longer appear within the bounds of the rolling window (MPC horizon), likewise they are not activated until
they have appeared in the MPC horizon. The aircraft which have not finished are shown planning for an
unknown time into the future as finishing can only be detected within the MPC horizon.

III.I. Wind Model

Large portions of the uncertainty about aircraft flight plans results from the inherent uncertainty in meteo-
rological forecasts. Wind speed and direction is probably the most important meteorological factor affecting
aircraft trajectories in the TMA. The wind disturbance is assumed to be made up of two components, a
nominal component representing the wind forecast and a stochastic component representing the forecast
errors. This paper uses a temporal-spatio wind model for the forecast errors based on the model used
by Lymperopoulos and Lygeros.22 Their model approximations were designed for wind prediction over a
far larger geographical scale than that used by the TMA example however appear to be suitable for our
application following experimentation.
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Figure 4. Graphical representation of active aircraft (light blue), completed aircraft (dark blue) and aircraft which
haven’t joined the problem (hatched) for rolling window simulation at three different points in simulation

The model of Lymperopoulos and Lygeros assumes an isotropic wind-field (invarient under rotations)
with uncorrelated wind speeds in the South-North and East-West directions. Vertical wind is neglected in
the model however correlation between wind at different altitudes is considered. The wind field is generated
from a random field where each point is Gaussian with zero mean and a covariance matrix R(t, P, t′, P ′)
where t and t′ are the points in time and P and P ′ are the points in three dimensional space. Through these
assumptions and by using an exponential function the correlation can be approximated as:

ρxy(t, P, t′, P ′) = σ(z)σ(z′)exp(−λ|t− t′|)exp

(
−β

∣∣∣∣∣ x− x′y − y′

∣∣∣∣∣
)

exp(−γ|z − z′|). (16)

Where σ(z) is the standard deviation of the wind error in m/s at altitude z. The figures used for λ, β and
γ used by Lygeros and Glover were λ = 6e−6m−1, β = 1.6e−6m−1 and γ = 1.5e−5m−1 along with σ(z) are
based on the data reported in.23

To use the correlation function above Lymperopoulos and Lygeros proposed the following method for
generating wind realisations. The wind field is divided into a grid with Nx points in the South-North
direction, Ny points in the East-West direction and Nz vertically. For each point in the three dimensional
grid 2 random numbers are generated from a zero mean Gaussian distribution. The first of these random
numbers in each pair relates to the South-North wind error and the second to the East-West wind error,
these numbers are stored in two vectors WX(k) and WY (k) at time step k.

The covariance matrix R̂ ∈ RNXNY NZ×NXNY NZ where each entry is a comparison between two grid
points using equation 16 is the covariance matrix for both WX(k) and WY (k) given the isotropic assumption.
Lygeros and Lymperopoulos assume this covariance matrix to be constant in time and thus generate wind
samples using the following linear Gaussian model:

WX(0) = Q̂vX(0), WX(k + 1) = aWX(k) +QvX(k + 1),
WY (0) = Q̂vY (0), WY (k + 1) = aWY (k) +QvY (k + 1),

(17)



where vX(k), vY (k) ∈ RNXNY NZ are standard independent Gaussian random variables, Q and Q̂ are derived
by Cholesky Decomposition from the covariance matrix R̂ using

QQT = (1− a2)R̂ and Q̂Q̂T = R̂ (18)

where a = e−δt/Gt with Gt a parameter of time correlation obtained from.23 The wind error for individual
aircraft is then obtained by tri-linear interpolation between the grid points.

IV. Parallelisation Implementation

It has been previously been proposed there is a large degree of speed up that can be obtained by par-
allelising the SMC algorithm.16–19 The authors previous work20 focused on implementation on a graphics
processing unit (GPU) using the CUDA programming language provided by NVIDIA and demonstrated
a 98% computational improvement. CUDA is a scalable parallel programming language similar to C and
C++ with the libraries and utility to design kernels to implement on a GPU. These kernels are repeatable
functions representing the code that the user wishes to be executed in parallel with different data. GPUs can
use thousands of threads at the same time, whereas a conventional computer will only use a few. The exe-
cution and near instantaneous switching between threads is how a GPU achieves such efficiency on parallel
applications.
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Figure 5. Graphical Representation of SMC Algorithm with Kernel Highlighted

Figure 5 shows a simplified graphical representation of the SMC algorithm focusing on the operations
taking place in a single computation step of the MPC. There is also a boxed region of the flowchart demon-
strating the GPU kernel. This kernel incorporates the inner loop of simulation specifically the lines 9-18 of
the algorithm. This code was a bottleneck in a sequential implementation as it must be executed multiple
times for each particle where the only difference between each execution is the particle’s individual data.
This made it a perfect candidate for parallelisation with one particle per thread, as there is minimal thread
interaction and use of shared memory.

In the algorithm used there is no need for the threads to synchronise or communicate and thus the
problem can be considered as ‘embarrassingly parallelisable’. The remaining implementation decision is to



select an appropriate random number generator for use within the kernel. In this paper’s implementation we
have focused on using the NVIDIA provided library CURAND, specifically the XORWOW (Xor Shift added
with Weyl sequence generator24) which seeds each thread and maintains the state of each random generator
between kernel calls. This generator was used for its superior speed compared to that of the others included
in CURAND.

V. Simulations and Results

This section presents the results of simulations performed on the previously outlined algorithm and appli-
cation setup. These simulations vary in complexity from single aircraft paths, used to tune the performance
of the objective function coefficients to tests designed to see how far we can push the implementation with
our current setup. The final section of the results discusses the computational speed of the method compared
to that of a previous implementation.20

V.A. Simulation Setup

For all simulations within this paper the following parameters were kept constant. MPC time steps were
10 seconds in length (δt = 10) and had a horizon length of H = 6 time steps. This is arguably far shorter
than needed in the application where standard ATC would be looking at 30 seconds to minute updates. For
simplicity aircraft have been standardised with the aerodynamic properties of Airbus A320 obtained from
BADA.25 The TMA is considered as a circle of radius 30km where there is a single runway at the origin.
Aircraft both land and depart East to West from this one runway. There is no additional runway scheduler
running alongside the simulations so separation near the landing envelope is maintained by the distance
separation used for conflict avoidance 5.

The algorithm used a Jmax = 100, with a schedule function of SampleSchedule(J) = b(3 + 5e0.05J)c
and L = 10240 particles (which have been naively arranged as 80 blocks of 128 threads for the GPU
implementation). The simulations were performed on an NVIDIA GeForce 580, which has 512 cores on the
Fermi architecture (32 cores per streaming multiprocessor (SM) and 16 SMs).

The disturbances from wind for all scenarios were simulated using the wind model outlined in Section III.I.
A three dimensional grid of eight points were used to generate the wind at the outlying reaches of the TMA
before trilinear interpolation found the disturbances at the aircrafts’ individual locations. No prevailing
wind was used in the scenarios so the aircraft are only subject to the random disturbances of the wind field
itself. A denser grid of points can be used for sampling the wind speed however this slows computation
down significantly with the need to generate many more random numbers within each inner loop of the GPU
kernel.

V.B. Single Aircraft Trajectories

The presented results were used to tune the coefficients in the objective functions for both departure and
arrival aircraft and evaluate the behaviour of arrival aircraft when exposed to the flow field. In each case
for departures and arrivals 12 aircraft have been independently simulated and then plotted together on
Figures 6 and 7 to give an overview on behaviour. The arrival aircraft were started at different places
around the airport and simulated until they reached the same landing zone. Departing aircraft were given
different desired bearings and simulated until they reached the edge of the TMA zone.

The effect of the flow field on arrival aircraft is clear in Figure 7, on aircraft approaching from the Eastern
side of the runway minimal diversion is taken prior to arrival. However the vehicle approaching from due
west of the runway is given a long diversion outside the TMA before re-approaching from a more suitable
bearing. In reality aircraft are rarely allowed to approach an airport from a restricted number of directions
and flying directly into departing aircraft traffic would be unlikely.

From this tuning the weightings shown in Table 1 were used for landing and take off aircraft in the
remainder of the scenarios in the paper. Tuning these parameters differently will have significant effects on
the trajectories generated.
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Figure 6. Departure trajectories for 12 single aircraft taking off from a runway at the origin in a Westerly direction
before heading to their desired bearing

Aircraft Type Coefficient Value Associated Cost

Departure

α1 0.4 Difference in bearing from desired to current
α2 0.1 Fuel minimisation
α3 0.25 Difference in altitude from desired to current
α4 0.25 Difference in airspeed from desired to current

Arrival

α̃1 0.25 Difference from aircraft heading to flowfield
α̃2 0.65 Difference from aircraft altitude to nominal altitude
α̃3 0.1 Fuel minimisation

Table 1. Example objective function weightings used for optimisation

V.C. Standard Arrivals and Departures

The simulations presented here demonstrate the unified running of the departure and arrival aircraft tra-
jectories for the airport. Scenarios were randomly generated such that both arrival and departure aircraft
joined the simulation at fixed times evenly spread across the entire simulation interval with a variance of
a few time steps. The simulations were run for 100 time step updates (total scenario length of around 15
minutes). Between 5-10 vehicles of both arrival and departure types were included in each scenario. Figure 8
shows a collection of final trajectories for scenarios. Not all scenarios completed successfully. In cases where
departing aircraft joined the problem when a landing aircraft was due to enter the landing envelope separa-
tion constraints were violated and no valid solution for solving could be found. This is one of the restrictions
of having fixed departure times which can be amended by allowing flexibility in scheduling as would happen
in a real airport. Whether this flexibility can be directly implemented in the SMC optimisation without an
outside scheduling agent is a topic of future work.
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Figure 7. Arrival trajectories for 12 single aircraft entering the TMA at different angles before proceeding to the
landing envelope to land on an runway from the East

V.D. Low Fuel Scenario

In the low fuel scenario two arriving aircraft with the same distance till landing are initialised, one with
plenty of fuel and the other with very little fuel remaining. This scenario is then run 20 times till both
aircraft have landed to see how the aircraft behave. In each run of the scenario the aircraft are subject to
a different set of disturbances from wind as well as the stochastic nature of the algorithm. Figure 9 shows
one of the generated trajectories. In the case of a human operator we would expect the aircraft with low
fuel to be prioritised for landing with the aircraft with more fuel being diverted or held. However as Table 2
shows the order in which the aircraft landed was actually more split. The cases where the low fuel aircraft
landed second was due to the aircraft using its fuel sparingly for acceleration; most likely due to the fuel
minimisation term in the objective function. Thus the high fuel aircraft proceeded faster towards the landing
envelope and landed first. In both situations the low fuel aircraft lands before it runs out of fuel. To alter
this behaviour an outside observer with some form of priorities would be needed to be added to the system
to schedule the order which aircraft may enter the landing envelope.

Aircraft which landed first Number of times Average fuel (kg) remaining on low fuel aircraft
High Fuel 11 22.6
Low Fuel 9 6.2

Table 2. Breakdown of which aircraft landed first in low fuel scenario and average fuel remaining

V.E. Congested Arrival Schedule

The congested arrival schedule is a demonstration of the number of aircraft the system can handle concur-
rently. Previous work by the authors did demonstrate the method for up to 20 aircraft simultaneously in
cruise like situations. However with the limited resource of the single runway it is not necessarily sensible
to initialise 20 aircraft in the first time step and run until all have landed. Instead aircraft are introduced
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Figure 8. Trajectories of 10 arrival (blue) and 10 departure (red) vehicles over a 100 time step simulation

to the scenario gradually as would happen in a real airport and removed from the scenario as they land.
No departure aircraft are considered in this scenario as this would necessitate flexible scheduling of take offs
which is currently neglected for simplicity (but as mentioned is the subject of future work). Figure 10 shows
24 arrival aircraft landing trajectories over time. The maximum concurrency observed in this scenario was
8 vehicles.

V.F. Computation Speed

Previously the MPC-SMC method was demonstrated for fast computation of many aircraft problems in
cruise like conditions20 with computation time per MPC update step varying to 33 seconds for a 20 vehicle
problem. This implementation had the simplification of fixed scenario lengths with all aircraft entering the
problem at the start and no aircraft leaving the problem before the end. As such all aircraft were active
during the entire scenario and computation time per step of the algorithm was deterministic based on the
number of aircraft in the problem. This is not true for this papers’ implementation where the number of
active aircraft in the problem varies step by step as aircraft both enter and leave the scenario.

Figure 11 shows the comparison of previous implementations time per update step compared to the
average of this paper, less points are available for this paper’s implementation due to the nature of the
scenarios being solved however it offers an insight into the magnitudes involved.

This implementation is significantly slower than the previous incarnation most notably due to the 10 fold
increase in number of particles needed to adequately represent the search space. The problem of landing
vehicles into a small terminal area whilst obeying all flight constraints is significantly harder than the
previous cruise like situation and 1024 particles was not enough to reliably find feasible solutions. However
the parallelisation of the SMC algorithm still makes this slow computation speed tractable but with the
size of GPU being used our updates can no longer be considered viable for real time. A larger or faster
GPU would offer direct benefit to the computation speed through allowing more cores to process the particle
threads and each core to work faster.
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Figure 9. Example trajectory for an aircraft with low fuel and an aircraft with high fuel approaching the landing
envelope at the same time (low fuel landing first)

VI. Conclusions

This paper has discussed the implementation of a parallelised Model Predictive Control, Sequential Monte
Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory control in air traffic
management specifically around the terminal manoeuvring area of an airport. The target problem was
nonlinear in both dynamics and objectives, highly constrained, non-convex and uses a single decision-maker
with multiple aircraft. The implementation included a temporal spatio wind model and rolling window
simulations for realistic ongoing scenarios. The method was shown to be capable of handling both arriving
and departing aircraft including some with very low fuel remaining. The aircraft throughout were optimised
for multi priority objective functions dependant on whether they are arriving or departing, the tuning of this
was demonstrated. A novel flow field was proposed to smooth the approach trajectories for arriving aircraft
and its effect on behaviour of aircraft was demonstrated. This lead to some restrictions on the approach
angles of aircraft arriving to the single runway such that they did not approach the runway directly into
oncoming departure traffic.

Avenues for further work have been identified as allowing flexible times for departure aircraft take off and
a more formalised approach of separating landing aircraft in the landing envelope other than the standard
spatial conflict detection. There is scope for speeding up the computation speed of the method through
either transferring to a higher spec GPU or optimisation of the existing code. This would allow for more
complexities to be included in the GPU kernel such as constraints on vertical acceleration for passenger
comfort and an external agent weighting the priorities of aircraft against one another for landing.
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