
ADAPTIVE SEQUENTIAL MONTE CARLO APPROACH FOR REAL-TIME APPLICATIONS

Thomas C.P. Chau1, Wayne Luk1, Peter Y.K. Cheung2, Alison Eele3, Jan Maciejowski3

Department of Computing1, Department of Electrical and Electronic Engineering2

Imperial College London, United Kingdom

Department of Engineering, University of Cambridge, United Kingdom3

email: {c.chau10, w.luk, p.cheung}@imperial.ac.uk, {aje46, jmm1}@cam.ac.uk

ABSTRACT

This paper presents an adaptive Sequential Monte Carlo ap-

proach for real-time applications. Sequential Monte Carlo

method is employed to estimate the states of dynamic sys-

tems using weighted particles. The proposed approach re-

duces the run-time computation complexity by adapting the

size of the particle set. Multiple processing elements on

FPGAs are dynamically allocated for improved energy ef-

ficiency without violating real-time constraints. A robot lo-

calisation application is developed based on the proposed

approach. Compared to a non-adaptive implementation, the

dynamic energy consumption is reduced by up to 70% with-

out affecting the quality of solutions.

1. INTRODUCTION

Sequential Monte Carlo method (SMC) is an efficient nu-

merical estimation technique that is applied to solve dynamic

problems involving non-Gaussianity and non-linearity, where

analytical solutions are not possible [1]. SMC is useful in

calculating the state of a system from a set of observations

which arrive sequentially in time and are corrupted by noise.

This method arises in a range of applications, especially in

positioning, tracking and navigation [2–4].

SMC is also known as particle filtering since the key

idea is to represent probability densities by sets of particles.

The quality of results relies on the number of particles being

employed. However, the larger the size of the particle set,

the higher the computation cost. Despite previous attempts

to accelerate SMC with hardware, design approach for the

real-time domain lacks attention. Real-time applications re-

quire state estimation to be ready at regular time intervals

and many of the real-time systems are power-constrained.

Under such scenarios, the challenges turn out to be achiev-

ing energy reduction, better resource usage and improved

quality of results within the real-time bound, rather than tar-

geting throughput.

In this paper, an adaptive algorithmic and architectural

approach using reconfigurable hardware is proposed for SMC

real-time applications. To the best of our knowledge, this

work is the first to target energy efficient real-time SMC ap-

plications. The proposed approach can be applied to general

applications in the SMC domain which share common pro-

cessing steps, and where properties of a particular applica-

tion are customised by reconfigurability of FPGA. The ar-

chitecture makes use of multiple processing elements (PEs)

to process particles. Each PE is implemented by a processor

or dedicated hardware logics on FPGA. To address the chal-

lenge of energy reduction within real-time bound, an adap-

tive algorithm is employed to dynamically adjust the size of

particle set and the number of active PEs. A PE is activated

based on the number of particles distributed to it.

The novel contributions of this paper include:

1. Adaptive SMC algorithm: The computation complex-

ity of SMC is reduced through adapting the size of

particle set dynamically in a predictable manner. The

quality of results is maintained.

2. Energy efficient resource allocation: PEs are allocated

dynamically for reduced energy consumption without

violating real-time constraints.

3. Prototype: A robot localisation application is imple-

mented on an FPGA based on the proposed adaptive

SMC approach. Compared to a non-adaptive imple-

mentation, the dynamic energy consumption is reduced

by 35-70%.

2. RELATED WORK

Design methodologies for SMC in hardware have been pro-

posed by several research groups. A detailed description

of SMC is available in [1]. Sankaranarayanan et al. [5]

have proposed a modified particle filtering algorithm to al-

low higher flexibility and scalability for hardware imple-

mentations. Though the resampling process with the SMC

is removed, their approach maintains high quality of results

over traditional particle filters. Saha et al. [6] have presented

a parameterisable approach for FPGA implementation of

particle filters. They have provided a model definition of

particle filters and have studied the trade-off of FPGA re-

sources and execution speed. In [7], Happe et al. have de-

veloped a SMC approach for hybrid CPU/FPGA platform.

Using a multi-threaded programming model, computation

is switched between hardware and software during run-time

to react to performance requirements. However, the above

approaches target SMC for static number of particles. The

proposed approach differs through adapting the particle set

size during run-time.

Adaptive particle filters have been proposed to improve

performance or quality of state estimation by controlling the

number of particles dynamically. Likelihood-based adap-

tation [8] determines the number of particles such that the

sum of weights exceeds a pre-specified threshold. Kullback

Leibler distance (KLD) sampling has been proposed by Fox

et al. in [9]. It offers better quality results than likelihood-

based approach. The number of particles are determined

in order to bound the error of posterior estimation. Park et

al. [10] improve the KLD sampling by adjusting the variance

and gradient data to generate particles near the high likeli-

hood region. These methods introduce data dependencies

in the sampling and importance steps making them difficult

for parallel hardware implementation. Bolic et al. [11] pro-

posed a particle filter that changes the number of particles

dynamically based on estimation quality. Decisions about

performing resampling are based on the number of particles.

This work has extended their techniques for the real-time

domain. Liu et al. [12] have developed a power adaptive

computing system to utilise the number of processing units

subject to power supply constraints, but have not addressed

real-time properties.

3. ADAPTIVE SMC APPROACH

The proposed approach eliminates particles with lowweights

such that the particle set size decreases in successive itera-

tions. Resampling is not performed until the number of par-

ticles drops below a threshold value. When the estimation

quality is good, the number of particles decreases slowly.

When there are large deviations in observation, the particle

set size decreases quickly.

Fig. 1 shows the architectural flow of the proposed adap-

tive SMC approach. Compared to traditional SMC

approaches, three stages have been added: reduction, de-

cision and resource allocation. At design time reconfigura-

bility is employed to customise the system for a particular

application. For example, the maximum number of parti-

cles, the sampling function and weight calculation vary for

different problems. During run-time, the dotted lines are

control signals to activate and deactivate PEs. The functions

of each block are discussed below.

Sampling &

Importance
Reduction Resampling

Resource

Allocation

Sampling &

Importance

Sampling &

Importance

PE
1

Decision:

Pt < M ?

No

Yes

Data

Control

act1

act2

actN

PE
2

PE
N

Fig. 1: Adaptive SMC architectural flow (Sampling & Im-

portance is performed in PE1 to PEN , others are per-

formed in PE0)

Sampling and Importance Blocks: During sampling, a

new particle set is drawn to form a prediction of current

state. The likelihood of each particle is calculated in impor-

tance to indicate whether the current measurement matches

the predicted state. Then a weight is assigned to each parti-

cle. The higher the likelihood, the higher the weight is.

Since particles processed in samling and importance are

independent, the calculation can be parallelised. A set of

PEs {PEn|n = 1, ..., N}, which each can be of different

implementations and speed, would be assigned to process

particles simultaneously. At time t, there are ρn particles al-

located to PEn. Particles of each PE are stored in its shared

memory for access and update by subsequent stages. As

soon as a PE has finished processing its own set of particles,

it is deactivated to reduce energy consumption.

Reduction Block: The objective of reduction is to eliminate

particles with low weight. If the particle set size drops below

the threshold, resampling process is triggered leading to a

larger execution time. Since unpredictable behaviour is not

desired for real-time applications, the minimum number of

particles which remain after reduction is constrained to 1

K

of the original. The value of K is user-defined in order to

limit the particle reduction rate, where integers between 2 to

10 are advisable. To achieve this, the particles are sorted in

descending order of weight and the first 1

K
of particles are

always kept.

Resampling Block: During resampling, particles with higher

weights are replicated and the number of particles with lower

weights are reduced. Resampling is performed when the

number of particles is under the threshold value M . The

value of M is decided empirically to balance the accuracy

of state estimation and the frequency that resampling hap-

pens. After resampling, the number of particles is restored

to the initial value.

Resource Allocation Block: During design time, the amount

of PEs is defined to fulfill the real-time processing require-

ment for the largest particle set size. Reducing the particle

set size during run-time introduces idle processing power.

Therefore, the resource allocation stage distrubuted particles

to PEs such that all PEs are activated at the beginning of each

step and are deactivated once computation finishes.

There are P particles in total, and PEn is assigned ρn

particles. The energy consumption of each PE is equalised

within the real-time constraint TRT . Instead of distributing

particles for the fastest speed, every PE gets its set of par-

ticles with both speed (Sn) and power (PWn) taken into

account. The allocation considers the total processing time

T (P) to avoid violating the real-time constraints. For ex-

ample, a faster PE would not necessarily be allocated more

particles because it could draw too much power. The way

to determine the particle distribution ratio at design time is

illustrated in Eq. 1.

Determine {ρn|n = 1, ..., N} = P ·
S

n

PWn

∑N

k=1

Sk

PWk

subject to

N∑

n=1

ρn = P and T (P) ≤ TRT

(1)

4. EVALUATION

The proposed adaptive SMC approach can be applied on

platforms with multiple PEs. For demonstration purpose, a

robot localisation system using SMC is implemented on an

Altera DE4 development board. The board accommodates a

Stratix IV EP4SGX530 FPGA clocked at 100MHz.

Localisation of mobile robots using SMC has been pro-

posed in [2]. SMC is demonstrated to be a good choice for

this application domain [13]. Given a priori learned map, the

robot receives sensor values and makes a movement at regu-

lar time intervals, so the computation is subject to real-time

constraints.

The PEs in the sampling and importance blocks are im-

plemented using 7 NIOS II processors. Single precision

floating-point data type is employed. It is straight forward

to have a homogeneous system with identical PEs, but in

practice, PEs could be implemented as hardware accelera-

tors with various performances. Therefore, in this experi-

ment, the processors are configured with different settings

as shown in Tab. 1. PE1 to PE7 have local memories

for program space and data memories for information of

particles. A master processor (PE0) is implemented us-

ing another NIOS II processor which is responsible for re-

duction, resampling and resource allocation. The proces-

sors are connected in a star topology through Avalon inter-

faces [14], where PE0 can access the data memory of other

processors. PE0 can deactivate other processors by issuing

interrupts and wait requests. The whole system occupies

22834 ALUTs (5%), 14481 registers (3%), 608 M9K mem-

ory blocks (48%) and 64 M144K memory blocks (100%).

Table 1: Properties of PEs

PE S a PW b I-cache c D-cache d Grade e

0 16.5 36 64K 64K f
1 16.5 36 64K 64K f
2 16 16 16K 16K f
3 13 12 4K 4K f
4 10.8 11 1K 1K f
5 10.6 11 512 512 f
6 8.3 10 512 / s
7 1 1 / / e

a Normalised speed.
b Normalised power consumption.
c Instruction cache size in bytes.
d Data cache size in bytes.
e f - fast, s - standard, e - economy. Refer to [15] for details.

The system is initialised with 1000 particles. The size of

map is 36m x 36m and the speed of robot is 0.1m/s. These

parameters are comparable with those used in a similar robot

localisation application [2]. The position is updated every

30s which is the real-time bound.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20

N
u

m
b

e
r

o
f

p
a

rt
ic

le
s

Step

Adaptive
Non-adaptive

Fig. 2: Particle count and activation of PEs

The variation of the number of particles at each time step

is shown in Fig. 2. The lines show the number of parti-

cles which the adaptive SMC approach is compared with the

non-adaptive one. Starting from 1000 particles, the adaptive

approach shows drops in the particle count in subsequent

steps. When the number of particles is below 300, particles

are resampled to the initial count. For the non-adaptive ap-

proach, the particle set size is fixed at 1000.

Fig. 3 show the dynamic energy consumption (bars) and

execution time (lines) respectively. The energy is calculated

based on the current measurement using an ADC on the

FPGA board. The adaptive approach shows an average of

56% energy reduction, which is contributed by deactivating

the PEs when they have finished the job before the timing

margin. For the non-adaptive approach, the particle set size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

D
y
n

a
m

ic
 e

n
e

rg
y
 (

jo
u

le
)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Step

Energy: Adaptive
Energy: Non-adaptive
Exec. time: Adaptive

Exec. time: Non-adaptive
Real-time bound

Fig. 3: Dynamic energy and execution time

is fixed and all PEs are always activated. In summary, the

shorter the execution time, the lower the energy consump-

tion. The adaptive approach has dynamic energy reduction

between 35 and 70%. If the threshold for resampling is low-

ered, more energy saving could be achieved.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

L
o

c
a

lis
a

ti
o

n
 e

rr
o

r
(m

)

Step

Adaptive
Non-adaptive

Fig. 4: Localisation error of robot

Fig. 4 shows the localisation errors compared to the ac-

tual positions. The maximum errors of all schemes are be-

low the 1m tolerance level [2]. The average errors of the

adaptive and non-adaptive approaches are 0.22m and 0.26m,

respectively. Considering the randomness of different trials,

the adaptive approach does not show significant deviation

from the non-adaptive one.

5. CONCLUSION

This paper presents an adaptive SMC approach for real-time

applications and proposes a resource allocation scheme ad-

dressing energy efficiency. Through a case study on robot

localisation, the proposed approach significantly reduces dy-

namic energy consumption compared with the non-adaptive

one, while maintaining quality of results. Ongoing and fu-

ture work includes applying the adaptive approach to het-

erogeneous accelerators for high performance applications.

Computational intensive data paths will be implemented in

hardware accelerators to improve performance and power

efficiency. Extension to cover run-time reconfiguration of

FPGAs is also of interest, such as customising the PEs dy-

namically for power and performance trade-off at run-time.

Acknowledgment

This work was supported in part by the European Union

Seventh Framework Programme under grant agreements num-

ber 248976, 257906, 287804, the UK EPSRC grant number

EP/G066477/1, and by the Croucher Foundation and Altera.

6. REFERENCES

[1] A. Doucet et al., Sequential Monte Carlo methods in practice.

Springer Verlag, 2001.

[2] D. Fox et al., “Monte Carlo localization: Efficient position estimation

for mobile robots,” in Proc. Conf. on AAAI, 1999, pp. 343–349.

[3] J. P. Villiers et al., “Particle predictive control,” Journal of Statistical

Planning and Inference, vol. 141, pp. 1753–1763, 2011.

[4] A. Eele and J. Maciejowski, “Comparison of stochastic optimisation

methods for control in air traffic management,” in Proc. IFAC World

Congress, 2011.

[5] A. Sankaranarayanan et al., “Algorithmic and architectural design

methodology for particle filters in hardware,” in Proc. Int. Conf. on

Computer Design, 2005, pp. 275–280.

[6] S. Saha et al., “Parameterized design framework for hardware imple-

mentation of particle filters,” in Proc. Int. Conf. on ASSP, 2008, pp.

1449–1452.

[7] M. Happe et al., “An adaptive sequential monte carlo framework with

runtime HW/SW repartitioning,” in Proc. Int. Conf. on FPT, 2009,

pp. 175–182.

[8] D. Koller et al., “Using learning for approximation in stochastic pro-

cesses,” in Proc. ICML, 1998, pp. 287–295.

[9] D. Fox, “Adapting the sample size in particle filters through kld-

sampling,” Int. Trans. on Robotics, vol. 22, no. 12, pp. 985–1003,

2003.

[10] S.-H. Park et al., “Novel adaptive particle filter using adjusted vari-

ance and its application,” IJCAS, vol. 8, no. 4, pp. 801–807, 2010.

[11] M. Bolic et al., “Performance and complexity analysis of adaptive

particle filtering for tracking applications,” in Proc. Asilomar Conf.

on SS&C, vol. 1, 2002, pp. 853–857.

[12] Q. Liu et al., “Power adaptive computing system design in energy

harvesting environment,” in Proc. Int. Conf. on SAMOS, 2011, pp.

33–40.

[13] J. Hightower and G. Borriello, “Particle filters for location estimation

in ubiquitous computing: A case study,” in Ubiquitous Computing.

Springer Berlin / Heidelberg, 2004, vol. 3205, pp. 88–106.

[14] Avalon interface specification. [Online]. Available: http://www.

altera.com/literature/manual/mnl avalon spec.pdf

[15] Nios ii processor. [Online]. Available: http://www.altera.com/

devices/processor/nios2/ni2-index.html

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.altera.com/devices/processor/nios2/ni2-index.html

