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Abstract—The Sequential Monte Carlo (SMC) method is a
simulation-based approach to compute posterior distributions.
SMC methods often work well on applications considered
intractable by other methods due to high dimensionality,
but they are computationally demanding. While SMC has
been implemented efficiently on FPGAs, design productivity
remains a challenge. This paper introduces a design flow
for generating efficient implementation of reconfigurable SMC
designs. Through templating the SMC structure, the design
flow enables efficient mapping of SMC applications to multiple
FPGAs. The proposed design flow consists of a parametrisable
SMC computation engine, and an open-source software tem-
plate which enables efficient mapping of a variety of SMC
designs to reconfigurable hardware. Design parameters that
are critical to the performance and to the solution quality are
tuned using a machine learning algorithm based on surrogate
modelling. Experimental results for three case studies show
that design performance is substantially improved after pa-
rameter optimisation. The proposed design flow demonstrates
its capability of producing reconfigurable implementations for
a range of SMC applications that have significant improvement
in speed and in energy efficiency over optimised CPU and GPU
implementations.

Keywords-FPGA; Sequential Monte Carlo; Machine Learn-
ing

I. INTRODUCTION

Sequential Monte Carlo (SMC) methods are a set of on-

line posterior density estimation algorithms that perform

inference of unknown quantities from observations. The

observations arrive sequentially in time and the inference

is performed on-line. A common application is in the guid-

ance, navigation and control of vehicles, particularly mobile

robots [1] and aircraft [2]. For these applications, it is critical

that high sampling rates can be handled in real-time. SMC

methods also have applications in economics and finance [3]

where minimising latency is crucial.

SMC methods are often preferable to Kalman filters

and hidden Markov models, as they do not require exact

analytical expressions to compute the evolving sequence

of posterior distributions. Moreover, they can model high-

dimensional data using non-linear dynamics and constraints,

are parallelisable, and can greatly benefit from hardware

acceleration. Acceleration of SMC methods has been studied

in applications such as air traffic management [4, 5], robot

localisation [6], object tracking [7] and signal processing [8].

While SMC has been implemented efficiently on FP-

GAs [4, 6, 7, 8], design productivity remains a challenge.

Firstly, while different sets of SMC parameters produce

the same accuracy, they have very different computational

complexity. For example, the performance of SMC relies

on a set of random samples, which are called particles in

the following. The more complex the problem, the larger

the number of particles needed. Using excessive numbers of

particles unfortunately causes prohibitive run-time without

increasing solution accuracy. The parameter space spans

multiple dimensions and the objective function can be non-

convex, making exhaustive optimisation impractical. Sec-

ondly, customising designs for different SMC applications

requires tremendous effort.

In this paper, we propose an SMC design flow for re-

configurable hardware. A computation engine captures the

generic control structure shared among all SMC applica-

tions. A framework for mapping software to hardware is

derived, so users can specify application-specific features

which are automatically converted to efficient hardware.

Timing model relates design parameters to performance

constraints. To enable rapid learning of a large design

space, a machine learning algorithm is used to automatically

deduce characteristics of the design space.

The contributions of this paper are as follows:

• A design flow to reduce the development effort of SMC

applications on reconfigurable systems (Section III).

Through templating the SMC structure, users can de-

sign efficient, multiple-FPGA SMC applications for

arbitrary problems, and the software template is open-

source.1

1Available online: http://cc.doc.ic.ac.uk/projects/smcgen

http://cc.doc.ic.ac.uk/projects/smcgen


• A machine learning approach that explores the SMC

design space automatically and tunes design parameters

to improve performance and accuracy (Section IV). The

resulting parameters can be applied to the hardware

design at run-time without the need for resynthesis.

It is demonstrated that parameter optimisation enables

the design space to be explored an order of magnitude

faster without sacrificing quality. Compared with pre-

vious work [4, 6], we have achieved better quality of

solutions and faster designs.

• The benefit of this approach in terms of design produc-

tivity and performance is quantified over a diverse set

of SMC problems. Three applications are implemented

on Altera and Xilinx-based reconfigurable platforms,

with varying numbers of FPGAs. For these problems,

the number of lines of code for the FPGA implementa-

tion is reduced by approximately 76%, and significant

speedup and energy improvement over CPU and GPU

implementations (Section V) are demonstrated.

II. BACKGROUND AND RELATED WORK

A. SMC Methods

SMC methods estimate the unobserved states of interest

based on observations in controlling various agents [9]. The

target posterior density p(st|mt) is represented by a set of

particles, where st is the state and mt is the observation at

time step t. A sequential importance resampling algorithm

[10] is used to obtain a weighted set of NP particles

{s
(i)
t , w

(i)
t }NP

i=1. The importance weights {w
(i)
t }NP

i=1 are ap-

proximations to the relative posterior probabilities of the

particles such that
∑NP

i=1 w
(i)
t = 1. This process is described

in Algorithm 1 and involve five computation stages:

Algorithm 1 SMC methods

1: for each time step t do
2: idx1← 0
3: Initialisation
4: while idx1 ≤ itl outer do
5: idx2← 0
6: itl inner ← 3 + 5 exp( 5∗idx1

itl outer
)

7: for each particle p do

8: while idx2 ≤ itl inner do
9: Sampling

10: Importance weighting
11: idx2← idx2 + 1
12: end while
13: end for
14: idx1← idx1 + 1
15: if idx1 ≤ itl inner then
16: Resampling
17: end if
18: end while

19: Update
20: end for

1) Initialisation: Weights {w
(i)
t }NP

i=1 are set to 1
NP

.

2) Sampling: Next states {s
′(i)
t }NP

i=1 are computed based

on the current state {s
(i)
t−1}

NP

i=1.

Table I
SMC DESIGN PARAMETERS. DYNAMIC: ADJUSTABLE AT RUN-TIME;

STATIC: FIXED AT COMPILE-TIME.

Parameters Description Type

itl outer Number of iterations of the outer loop

Dynamic
itl inner Number of iterations of the inner loop

NP Number of particles
S Scaling factor for standard deviation of noise
H Prediction horizon

Static
NA Number of agents under control

3) Importance weighting: Weight {w
(i)
t }NP

i=1 is updated

based on a score function which accounts for the

likelihood of particles fitting the observation. Within

each iteration idx1, the sampling and importance

weighting stages are iterated itl inner times so that

those particles with sustained benefits are assigned

higher weights. As idx1 increases, the set of particles

reflects a more accurate approximation, so itl inner

is increased exponentially.

4) Resampling: By removing the particles with small

weights and replicating those with large weights

itl outer times in a time step, the problem of degen-

eracy is addressed [11]. Without this step, only a small

number of particles will have substantial weights for

inference.

5) Update: State st is obtained from the resampled

particle set {s
(i)
t }NP

i=1 via weighted average or more

complicated functions that will be shown below.

Table I summarises the parameters of the SMC methods

described in Section II-A.

B. SMC Applications

1) Stochastic Volatility: These models are used exten-

sively in mathematical finance [12, 13], and describe volatil-

ity as a stochastic process which better reflects the be-

haviour of many financial instruments but are computation-

ally expensive. In this work, the sampling function shown

in Equation 1 is employed, where yt is the observable

time varying volatility and st represents the stochastic log-

volatility process. β and φ are empirical constants.

yt = β exp(st/2)ǫt, ǫt ∼ N (0, 1)

st = φst−1 +N (0, 1)
(1)

The sampling function in Equation 2 is implied by Equa-

tion 1. The state transition from st−1 to st is used to draw

random samples sit from the existing pool of particles.

sit ∼ N (φsit−1, 1) (2)

2) Robot Localisation: SMC methods are applied to

mobile robot localisation [1], and this application is used as

an example throughout the paper. At regular time intervals,

a robot obtains sensor values, identifies its location and

commits a move. The robot needs to be aware of the

locations of other moving objects in the environment.

The sampling stage is described by Equations 3 and 4.

The robot estimates its updated state st based on the current



known location (x, y) and heading h. State is affected by

external reference status rt which contains displacement δ

and rotation γ. Importance weighting is used to calculate

the likelihood of a location based on the observation, i.e.

the sensor values.

(

sit
)

=





xi
t

yit
hi
t



 =







xi
t−1

+ δ
′i
t cos(hi

t−1
)

yit−1
+ δ

′i
t sin(hi

t−1
)

hi
t−1

+ γ
′i
t






(3)

(

rit
)

=

(

δ
′i
t

γ
′i
t

)

=

(

N (δt, σ2
a)

N (γt, σ2

b
)

)

(4)

3) Air Traffic Management: SMC methods are applied to

model predictive control (MPC) optimisation where control

actions at discrete time intervals are determined to minimise

error criteria [2]. An example is air traffic management

which avoids dangerous encounters by maintaining safe

separation distances between aircraft.

At each sampling instant, the control sequence over a

number of future time steps, called the prediction horizon

H , is estimated. A state is a set of control sequences

{s
(i),0...H−1
t }NP

i=1 being picked within a permitted range and

applied to the current reference status rt−1 to compute the

future set of reference statuses {r
′(i),0...H−1
t }NP

i=1. During

importance weighting, a score function evaluates the quality

of estimation for each particle, and weights the product

of scores over the horizon. If any particle violates any

constraint, its weight is set to zero. The first control s0t in

the sequence, is obtained by selecting the best one among

{s
(i),0...H−1
t }NP

i=1. Then the selected control is committed to

form reference rt.

Equation 5 illustrates a control tuple that consists of roll

angle φ; pitch angle τ ; and thrust T . Equation 6 shows

a reference that consists of the current position in three

dimensional space (x, y, a), heading angle χ, air speed V

and mass M . For more details of the model, see [5].

(

sit
)
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
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φ
′i
t

τ
′i
t

T
′i
t




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a)
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b
)
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

 (5)
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xt−1 + Vt−1 cos(χt−1) cos(τ
′i
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yt−1 + Vt−1 sin(χt−1) cos(τ
′i
t )

at−1 + Vt−1 sin(τ
′i
t )

χt−1 + L sin(φ
′i
t )/(Mt−1Vt−1)

Vt−1 + (
T

′
i

t
−D

Mt−1

− g sin(τ
′i
t ))

Mt−1 − ηT
′i
t










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




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III. SMC DESIGN FLOW

This section introduces a design flow for generating

reconfigurable SMC designs. The design flow has two novel

features to minimise hardware redesign efforts: (1) A generic

high-level mapping where application-specific features are

specified in a software template and automatically con-

verted to hardware. The template supports the parameter

optimisation described in Section IV. (2) A parametrisable

SMC computation engine which is made up of customisable

building blocks and generic control structure that maximises

design reuse.

Functional

specification

Extract application

features

SynthesisSMC

computation

engine design

Def

(State, Reference,

Parameters)

FPGA Func

(Sampling,

Weighting)

CPU Func

(Initialisation,

Update)

Application features

Supported

FPGA

configurations

Figure 1. Design flow for SMC applications. Users only customise the
application-specific descriptions inside the dotted box.

Figure 1 shows the proposed design flow. Starting with

a functional specification such as software codes or mathe-

matical descriptions, the users identify and code application-

specific descriptions (Section III-A). The design flow au-

tomatically weaves these descriptions with the computa-

tion engine (Section III-B) to form a complete multiple-

FPGA system. In this work the synthesis tool employed is

Maxeler’s MaxCompiler, which uses Java as the underlying

language. MaxCompiler also supports FPGAs from multiple

vendors, such that low level configurations, such as I/O

binding, are performed automatically. Our approach can be

extended to support other tools and devices, for example by

having the appropriate templates in VHDL or Verilog.

A. Specifying Application Features

Users create a new SMC design by customising the

application-specific Java descriptions inside the dotted box

of Figure 1. These descriptions correspond to Def (Code 1),

FPGA Func (Code 2) and CPU Func.

Def: Code 1 illustrates the class where number rep-

resentation (floating-point, fixed-point with different bit-

width), structs (state, reference), static parameters (Table I)

and system parameters are defined. Users are allowed to

customise number representation to benefit from the flexi-

bility of FPGA and make trade-off between accuracy and

design complexity. State and reference structs determine the

I/O interface. Static parameters are defined in this class,

while dynamic parameters are provided at run-time. System

parameters define device-specific properties such as clock

speed and parallelism.

FPGA Func: Sampling and importance weighting (line 9

and 10 of Algorithm 1) are the most computation intensive

functions, and accelerated by FPGAs. Code 2 illustrates how



these two FPGA functions are defined. Given current state

s in, reference r in and observation m in (sensor values in

this example), an estimation state s out is computed. Weight

w accounts for the probability of an observation from the

estimated state. The weight is calculated from the product

of scores over the horizon. In this example, the weight is

equal to the score as the horizon length is only 1.

CPU Func: Initialisation and update are functions run-

ning on the CPU. They are responsible for obtaining and

formatting data and displaying results. resampling is inde-

pendent of applications so users need not to customise it.

1 public class Def {

2 // Number Representation

3 static final DFEType float_t =

4 KernelLib.dfeFloat(8,24);

5 static final DFEType fixed_t =

6 KernelLib.dfeFixOffset(26,-20,SignMode.TWOSCOMPLEMENT);

7 // State Struct

8 public static final DFEStructType state_t = new

9 DFEStructType(

10 new StructFieldType(’’x’’, compType);

11 new StructFieldType(’’y’’, compType);

12 new StructFieldType(’’h’’, compType););

13 // Reference Struct

14 public static final DFEStructType ref_t = new

15 DFEStructType(

16 new StructFieldType(’’d’’, compType);

17 new StructFieldType(’’r’’, compType););

18 // Static Design parameters (Table I)

19 public static int NPMin = 5000, NPMax = 25000;

20 public static int H = 1, NA = 1;

21 // System Parameters

22 public static int NC_inner = 1, NC_P = 2;

23 public static int Clk_core = 120, Clk_mem = 350;

24 public static int FPGA_resampling = 0, Use_DRAM = 0;

25 // Application parameters

26 public static int NWall = 8, NSensor = 20;

27 }

Code 1: Structs and parameters for the robot localisation example.

28 public class Func {

29 public static DFEStruct sampling(

30 DFEStruct s_in, DFEStruct c_in){

31 DFEStruct s_out = state_t.newInstance(this);

32 s_out.x = s_in.x + nrand(c_in.d,S*0.5) * cos(s_in.h);

33 s_out.y = s_in.y + nrand(c_in.d,S*0.5) * sin(s_in.h);

34 s_out.h = s_in.h + nrand(c_in.r,S*0.1);

35 return s_out;

36 }

37 public static DFEVar weighting(

38 DFEStruct s_in, DFEVar sensor){

39 // Score calculation

40 DFEVar score = exp(-1*pow(est(s_in)-sensor,2)/S/0.5);

41 // Constraint handling

42 bool succeed = est(s_in)>0 ? true : false;

43 // Weight accumulation

44 DFEVar w = succeed ? score : 0; //weight

45 return w;

46 }

47 }

Code 2: FPGA functions (Sampling and importance weighting)
for the robot localisation example.

B. Computation Engine Design

To allow customisation of the computation engine, the

engine and data structure are designed as shown in Fig-

ure 2(a) and 2(b) respectively. The computation engine

itl_inner

Sampling

&

Importance weighting

Weight accumulation

&

Resampling index generation

Resampling

FPGAs

CPUs

particle

index /

weight

state reference

Initialisation

Update

itl_outer

time_step

Inter-FPGA

connection

next

state

(a)

C0C1CNA-1

Particle 0Particle NP-1Particle 0

Horizon H=0Horizon H=1

C0C1CNA-1C0C1CNA-1

S0S1SNA-1

Particle 0Particle NP-1

S0S1SNA-1

Particle 0Particle NP-1

State

stream

Reference

stream

Weight

stream

W0W1WNA-1W0W1WNA-1

(b)

Figure 2. (a) Design of the SMC computation engine. Solid lines represent
data paths while dotted lines represent control paths; (b) Data structure of
particles represented by three data streams.

employs a heterogeneous structure that consists of multiple

FPGAs and CPUs. FPGAs are responsible for sampling,

importance weighting and optionally resampling index gen-

eration, and fully pipelined to maximise throughput. To

exploit parallelism, particle simulations (sampling and im-

portance weighting) are computed simultaneously by every

processing core on each FPGA. Processing cores can be

replicated as many times as FPGA resources allow. In

situation where the computed results have to be grouped

together, data are transferred among FPGAs via the inter-

FPGA connection. To maximise the system throughput,

remaining non-compute-intensive tasks that involve random

and non-sequential data accesses are performed on the

CPUs. FPGAs and CPUs communicate through high band-

width connections such as PCI Express or InfiniBand.

From the control paths (dotted lines) of Figure 2(a),

we see that there are three loops matching Algorithm 1:

(1) inner, (2) outer, and (3) time step. First, the inner

loop iterates itl inner number of times for sampling and

importance weighting, itl inner increases with the iteration

count of the outer loop. Second, the outer loop iterates

itl outer times to do resampling. The resampling process

is performed itl outer times to refine the pool of particles.
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Figure 3. FPGA kernel design. The blocks that require users’ customisation
are darkened. The dotted box covers the blocks that are optional on FPGAs.

The particle indices are scrambled after this stage and the

indices are transferred to the CPUs to update the particles.

Third, the time loop iterates once per time step to obtain a

new control strategy and update the current state.

Based on this fact, the data structure shown in Figure 2(b)

is derived. Each particle encapsulates three pieces of infor-

mation: (1) state, (2) reference, and (3) weight, each being

stored as a stream as indicated in the figure. The length of

the state stream is NP ·NA ·H because each control strategy

predicts H steps into the future. The reference and weight

streams have information of NA agents in NP particles.

Changing the values of itl outer, itl inner and NP at

run-time is allowed since they only affect the length of

the particle streams, and not the hardware data path. The

computation engine is fully pipelined and outputs one result

per clock cycle.

Figure 3 shows the design of the FPGA kernel. Blocks that

require customisation are darkened. The sampling function

in Code 2 is mapped to the Sampling block which accepts

a state and a reference on each clock cycle and calculates

the next state on the prediction horizon. After getting a state

from the CPU at the beginning (itl inner = 0 and H = 0),

the data will be used by the kernel itl inner ·NP times. An

optional state RAM enables reuse of state data and improve

performance when the value of itl inner is large. An array

of LUT-based random number generators [14, 15] is seeded

by CPU to provide random variables; application parameters

are stored in registers; and a feedback path stores the state

of the previous NP ·NA cycles.

The Importance weighting block computes in three

steps. Firstly, Score calculation uses the states from the

Next state block to calculate scores of all the states over

the horizon. A feedback loop of length NP ·NA stores the

cost of the previous horizon and accumulates the values.

Secondly, Constraint handling uses the states from the Next

state block to check the constraints. The block raises a fail

flag if a constraint is violated. Lastly, Weight calculation

combines the scores of the states over the horizon.

Part of the resampling process is handled by the Resam-

pling index generation and weight accumulation blocks.

Weights are accumulated to calculate the cumulative distri-

bution function, then particles indices are reordered. These

two blocks can either be computed on FPGAs or CPUs.

All the blocks allow precision customisation using fixed-

point or floating-point number representation. Users have

the flexibility to make trade-off between result accuracy and

design complexity.

C. Performance Model

We derive a performance model to analyse the effect of

parameters on the processing speed and resource utilisation

of the computation engine. It will be used in Section IV for

parameter optimisation.

The processing time of a time step is shown in Equation 7.

It has four components which are iterated itl outer times.

Tstep =itl outer ·
(

Ts&i + Tresample + Tcpu + Ttransfer

)

(7)

Ts&i is the time spent on sampling and importance

weighting in the FPGA kernels. Since the data is organised

as a stream as described in Section III-B, the time spent

on sampling and importance weighting is linear with NP ,

NA and H . It is iterated itl inner times in the inner loop.

The sampling and importance weighting process can be

accelerated using multiple cores, such that each of them is

responsible for part of the inner loop iterations or particles.

NC represents the number of processing cores being used on

one FPGA, and NBoard is the number of FPGA boards being

used. min(1, bandwidth
sizeof(state)·freq ) accounts for the limitation

of bandwidth between FPGAs and CPUs.

Ts&i =
itl inner ·NP ·NA ·H

NC ·NBoard · freq
·min

(

1,
bandwidth

sizeof(state) · freq

)

(8)

Tresample is the time spent on generating the resampling

indices. It takes NP ·PW +NP ·NA cycles to generate the

cumulative probability distribution function, and a further

3 ·PL ·NP cycles to generate particle indices. PW and PL

are the length of the pipelines. Tresample can be omitted if

resampling is processed by the CPUs.

Tresample =
NP · PW +NP ·NA + 3 · PL ·NP

freq
(9)



Tcpu is the time spent on resampling and updating the

current state on the CPUs. The time is related to the amount

of data and the speed of the CPU. α1 is the scaling factor

of the CPU speed.

Tcpu = α1 ·H ·NP ·NA (10)

Ttransfer is the data transfer time that accounts for the

time taken to transfer the state stream between CPUs and

DRAM on an FPGA board. Ttransfer can be omitted if no

DRAM is used.

Ttransfer =
NP ·NA · (H · sizeof(state))

bandwidth
(11)

IV. OPTIMISING SMC COMPUTATION ENGINE

The design parameters in Table I have great impact on the

performance. 3 questions manifest when finding optimised

customisation of the engine: (1) Which sets of parameters

have the best accuracy? (2) For the same accuracy, which

sets of parameters meet the timing requirement? (3) How

can we reduce the design parameter exploration time?

A. Effect of the Design Parameters

Referring to Table I, the SMC computation engine has up

to six design parameters, each of which adds a dimension

to the design space. It is ineffective to exhaustively search

for the best set of parameters. Furthermore, the performance

curve of each dimension can be non-linear and constrained

by the real-time requirement and FPGA resources.

To answer questions 1 and 2, consider the robot lo-

calisation application. Its solution quality is measured by

the root mean square error (RMSE) in localisation. We

study the effect of changing design parameters using the

functional specification in Figure 1, e.g. a C program. Its

fast build time helps us to perform analysis effectively but its

performance is too slow for real-time operation. The timing

model described in Section III-C estimates the run-time of

the FPGA implementation.

When NP and itl outer are explored together as shown

in Figure 4, we see an uneven surface. Although non-linear,

the trend of RMSE decreasing as NP and itl outer are

increased is evident. The valid parameter space is con-

strained by the real-time requirement. The parameter space is

darkened for those parameters leading to an RMSE greater

than 1 m (Question 1). Moreover, the dark region with a

run-time longer than the 5 seconds real-time requirement is

marked as invalid (Question 2).

If the value of S is considered, the parameter optimi-

sation problem expands to three dimensions as shown in

Equation 12.

minimise RMSE = f(NP , itl outer, S)

subject to RMSE ≤ 1 m, Tstep ≤ 5s,
(12)

B. Parameter Optimisation

Now we come to question 3, the parameter optimisation

problem, which is difficult as construction of an analytical
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Figure 4. Parameter space of robot localisation system (NA=8192, S=1).
The dark region on the top-right indicates designs which fail localisation
accuracy constraints, while those on the bottom-left indicates designs which
fail real-time requirements.

model combining timing and quality of solution is either

impossible or very time consuming. Furthermore the de-

sign space is constrained by multiple accuracy and real-

time requirements. The problem is further aggravated by

the curse of dimensionality. We use an automated design

exploration approach which is facilitated by a machine learn-

ing algorithm developed in [16]. The approach allows the

performance impact of different parameters to be determined

for any design based on our SMC computation engine.

A surrogate model is employed to enable rapid learning

of the valid design space and deal with a large number of

parameters. The idea is illustrated in Figure 5. Firstly, a num-

ber of randomly sampled designs is evaluated (Figure 5(a)).

Secondly, the results obtained during evaluations are used

to build a surrogate model. The model provides a regression

of a fitness function and identifies regions of the param-

eter space which fail any of the constraints (Figure 5(b)).

Thirdly, the surrogate model output is used to calculate the

expected improvement (Figure 5(c)). Finally, the exploration

converges to the parameter set that is expected to offer the

highest improvement. Parameter sets in the invalid region

are disqualified (Figure 5(d)).

Our SMC computation engine is made customisable to

improve productivity of application builders who target

FPGAs, based on an optimisation approach which is already

applicable to CPUs and GPUs.

V. EVALUATION

A. Design Productivity

We first analyse how the proposed design flow can reduce

design effort. In Table II, user-customisable code is classified

into three parts: (a) Def is the definition of state, reference

and parameters. (b) FPGA Func is the description of sam-

pling and importance weighting functions. (c) CPU Func is

the initiation, resampling and update part running on CPU.

On average, users only need to customise 24% of the source

code. Moreover, automatic design space optimisation greatly

saves overall design time. As we will see in the applications

below, we are able to choose the optimal set of parameters

without conducting an exhaustive search.
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Figure 5. Illustration of automatic parameter optimisation: (a) Sampling
parameter sets; (b) Building surrogate model; (c) Calculating expected
improvement; (d) Moving to the point offering the highest improvement.

Table II
LINES OF CODE FOR 3 SMC APPLICATIONS UNDER THE PROPOSED

DESIGN FLOW.

Custom codes
Def FPGA Func CPU Func All codes Custom %

Sto. vol. 31 44 84 1,164 13.7
Robot loc. 54 143 56 1,113 22.7
Air traffic 45 360 70 1,360 35.0

B. Application 1: Stochastic Volatility

Our design flow is used in targeting a stochastic volatility

model to a Xilinx Virtex-6 XC6VSX475T FPGA at 150

MHz. Parallel single precision floating-point data paths are

used to maximise resource utilisation and hence perfor-

mance. Limited by I/O constraints, 16 processing cores are

chosen. The resulting design uses 70,674 LUTs (24%), 448

DSPs (22%) and 394 block RAMs (19%). The CPU is an

Intel Core i7 870 quad-core processor clocked at 2.93GHz.

The design space has two dimensions, NP and S (Table I).

Out of 420 sets of design parameters, the machine learning

approach evaluates 20 of the candidates, and obtains an

optimal set of parameters NP =768, S=1.5 which minimises

the estimation error.

Table III summarises the performance of CPU and recon-

figurable systems using the same set of tuned parameters.

Both systems have the same microATX form factor for

fair comparison. Since the data size being processed is

very small, the processing time of reconfigurable system is

dominated by the overhead of invoking the FPGA kernel.

C. Application 2: Mobile Robot Localisation

Now we look at an application with larger data set. For

this example the same reconfigurable system as application

1 is used. Two processing cores are instantiated in an FPGA.

Core computation in the sampling and importance weight-

ing process is implemented using fixed-point arithmetic to

optimise resource usage. The result utilises 148,431 LUTs

(50%), 1,278 DSPs (63%) and 549 block RAMs (26%).

Table III
PERFORMANCE COMPARISON OF STOCHASTIC VOLATILITY.

CPU a This work b

Clock frequency (MHz) 2,930 150
Number of cores 4 16

Run-time per step (ms) 0.05 0.5
Power (W) 120 140
Energy (mJ) 6 70

a Intel Core i7 870 CPU, optimised by Intel Compiler with SSE4.2 and flag -fast

enabled.
b Maxeler MaxWorkstation with Xilinx Virtex-6 XC6VSX475T FPGA and Intel

Core i7 870 CPU, developed using MaxCompiler.

The design space has three dimensions: itl outer, NP

and S. Out of 945 sets of parameters, 52 sets are evaluated

to minimise the localisation error within the 5 seconds real-

time constraint.

Table IV compares the performance of our reconfigurable

system with CPU, GPU and a previous system in [6] which

has not been optimised by our proposed approach. The re-

configurable system is 8.9 times and 1.2 times faster than the

CPU and GPU, respectively. With parameter optimisation

that maximise accuracy, our work achieves a better RMSE

than the previous work (0.15m vs. 0.52m).

Table IV
PERFORMANCE COMPARISON OF ROBOT LOCALISATION.

CPU This work Ref. sys. [6] GPU

opt. a opt. b w/o opt. b opt. c

Clk. freq. (MHz) 2,930 120 100 1,150
Number of cores 4 2 2 448

Run-time / step (s) 33.1 3.7 1.6 4.5
RMSE (m) 0.15 0.15 0.52 0.15
Power (W) 130 145 145 287
Energy (kJ) 4.3 0.54 0.23 1.29

a,b Refer to configurations in Table III.
c NVIDIA Tesla C2070 GPU, developed using CUDA programming model.
d Parameters with optimisation: itl outer=2, NP =14000, S=1.2;

Parameters without optimisation: itl outer=1, NP =8192, S=1.

D. Application 3: Air Traffic Management

The air traffic management system is able to control

20 aircraft simultaneously. The FPGA part runs on a 1U

machine hosting six Altera Stratix V GS 5SGSD8 FPGAs

clocked at 220 MHz, each of which has a single precision

floating-point data path that consumes 166,008 LUTs (63%),

337 multipliers (9%) and 1,528 block RAMs (60%). The

CPU part runs on two Intel Xeon E5-2640 CPUs clocked at

2.53GHz. Both parts are connected via InfiniBand.

This application has four design parameters leading to

a space with 4000 sets of parameters. The optimisation

target is to minimise the time of aircraft spending in the air

traffic control region. Machine learning reduces the number

of evaluations to 1% as indicated in Table V. Hence, the

parameter optimisation time is reduced from days to hours.

Table VI summarises the performance of the CPU, GPU

and reconfigurable system. To ensure fair comparisons, we

scale the CPU and GPU systems to similar form factors

with the reconfigurable system. The scaling is based on



Table V
PARAMETER OPTIMISATION OF AIR TRAFFIC MANAGEMENT SYSTEM

USING MACHINE LEARNING APPROACH.

NA
Parameter sets Parameter set obtained

evaluated / total itl outer H NP S

4 41 / 4000 20 5 500 0.1
20 31 / 4000 100 8 5000 0.05

Table VI
PERFORMANCE COMPARISON OF AIR TRAFFIC MANAGEMENT.

CPU GPU This work Ref. FPGA [4]

opt. a opt. b opt. c w/o opt. d

Clk. freq. (MHz) 2,660 1,150 220 150
Number of cores 24 1,792 6 5
Power (W) 550 1100 600 N/A

4 Run-time / step (s) 0.80 0.12 0.03 2.2
aircraft Energy (kJ) 0.44 0.13 0.02 N/A

20 Run-time / step (s) 198 28.25 11.6 N/A
aircraft Energy (kJ) 108.90 29.95 7.0 N/A

a 4 Intel Xeon X5650 CPUs (scaled), optimised by Intel Compiler with SSE4.2
and flag -fast enabled.

b 4 NVIDIA Tesla C2070 GPUs (scaled), developed using CUDA programming
model.

c Maxeler MPC-X2000, with 6 Altera Stratix V GS 5SGSD8 FPGAs and 2 Intel
Xeon X5650 CPUs, developed using MaxCompiler.

d Altera Stratix IV EP4SGX530 FPGA.
e Parameters with optimisation: refer to Table V;

Parameters without optimisation: itl outer=100, NP =1024, S=0.05, H=6.

the fact that the sampling and importance weighting pro-

cess is evenly distributed to every GPU and computed

independently, while the resampling process is computed

on the CPU no matter how many GPUs are used. The

reconfigurable platform is faster and more energy efficient

than the other systems.

We also compare the performance of our work with a

reference implementation that uses an Altera Stratix IV

FPGA [4]. That implementation is only large enough to sup-

port four aircraft and it does not have the flexibility to tune

parameters without re-compilation. Our design exploration

approach is able to select the set of parameters that produces

the same quality of results and is up to 73 times faster.

VI. CONCLUSION

This paper demonstrates the feasibility of generating

highly-optimised reconfigurable designs for SMC applica-

tions, while hiding detailed implementation aspects from the

user. A software template makes the computation engine

portable and facilitates code reuse, the number of lines of

user-written code being decreased by approximately 76%

for an application. We further establish that a surrogate

software model combined with machine learning can be

used to rapidly optimise designs, reducing optimisation time

from days to hours; and that the resulting parameters can be

utilised without resynthesis.

Ongoing and future work is focused on incorporating

resource requirements with device-specific parameters, such

as the level of parallelism and clock speed, into the ma-

chine learning approach [16]. We are currently investigating

run-time optimisation of parameters based on our initial

work [6]. We will also automate the design flow to allow

translation of designs captured in software programming

languages (e.g. R, MATLAB) to reconfigurable implemen-

tations, and extend the software template in VHDL/Verilog

to support a wider range of systems.
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